

Your Global Flow Control Partner

Bray/McCannalok High Performance Cryogenic Butterfly Valves Technical Manual

TABLE OF CONTENTS

For information on this product and other Bray products please visit us at our web page - <u>www.bray.com</u>

SEATING AND UNSEATING TORQUES

Check the flow direction of the media and ensure that the valve is installed with the retainer downstream.

	ASME 150 - Torques (Lb-in)									
Valve	Series 40/41 Cryogenic - Valve Differential Pressure (psig)									
Inches	Less than 150 psig	>150-200 psig	>200-250 psig	>250-285 psig						
3	820	845	882	912						
4	912	1,012	1,085	1,190						
6	1,770	1,920	2,010	2,103						
8	2,973	3,184	3,395	3,543						
10	4,212	4,551	5,009	5,330						
12	6,995	7,538	8,281	8,801						
14										
16										
18	Please Consult Factory									
20										
24										

	ASME 300 - Torques (Lb-in)										
Valve	Series 42/43 Cryogenic - Valve Differential Pressure (psig)										
Size Inches	Less than 150 psig	>150-350 psig	>350-550 psig	>550-740 psig							
3	820	955	1,106	1,213							
4	916	1,219	1,512	1,703							
6	2,112	2,910	3,716	4,308							
8	3,160	4,320	5,521	6,263							
10	7,315	10,230	13,020	15,021							
12	11,010	14,705	18,430	21,102							
14											
16											
18		Please Consult Fac	tory								
20											
24											

DYNAMIC TORQUES

When a media flows through a butterfly valve, static pressure does not act uniformly on the surfaces of the valve disc. Dynamic torque will cause rotary motion when unchecked by the actuator or manual operator possibly resulting in opening or closing of the valve. If the dynamic torque is of a magnitude that is greater than the bearing and packing friction torque and there is no actuator in place to maintain disc position, the opening or closing action could result in injury to operating personnel or an interruption of the process. Sudden closure (slamming) can cause water hammer damage in lines carrying liquid.

In high performance butterfly valves which have the disc offset from the stem and have non-symmetrical disc faces, dynamic torque acts to close the valve if the valve is installed with the seat retainer downstream.

Seat Retainer Downstream

Dynamic torque should be calculated as part of the valve actuator sizing procedure or to determine if hand lever operation is acceptable. In this regard, the total torque of all service conditions must be considered.

The total torque when the disc is in the seat consists of:

- 1. Seating torque
- 2. Stem packing torque
- 3. Eccentricity torque
- 4. Stem bearing torque

The total torque when the disc is in the seat is published as seating/unseating torque. When the disc is out of the seat, the total torque consists of dynamic torque, stem packing torque, and stem bearing torque.

Total torque changes with the disc position. Maximum total torque can occur at shutoff (disc in the seat), at breakaway (motion initiation), or at any open disc position where the product of valve pressure drop and dynamic torque coefficient peaks in combination with prevailing bearing and packing torque.

Estimating Dynamic Torque

Dynamic torque can be estimated using the following empirical equations:

Liquid Flow:

Imperial Td (Lb-in) = Ct $D^3 \triangle p$

Metric Td (N-m) = .0001 Ct D³ \triangle p

Gas Flow:

Imperial Td (Lb-in) = Ct $D^3 Y \triangle p$

Metric Td (N-m) = .0001 Ct D³ Y \triangle p

Dynamic Torque - Terminology

- Ct dynamic torque coefficient (see graphs and tables on page 4 for values of Ct.) Positive value of Ct means that the dynamic torque acts to close the valve and a negative value of Ct to open the valve.
- D nominal valve size (in or mm)
- Fk ratio of specific heat factor (dimensionless) Fk = k/1.40 or Fk = 1 for air
- k ratio of specific heat (dimensionless)
- $\triangle p$ effective pressure drop across the valve (psi or bar)
- p1 valve inlet pressure (psia or bar abs.)
- Td dynamic torque (Lb-in or N-m)
- $x x = \triangle p/p1$
- Y gas expansion factor (dimensionless) Y = 1 - x / (3 Fk xt)
- Xt gas critical pressure ratio (dimensionless) Values of xt change with disc position and are identical for seat retainer upstream and downstream.

° Open	xt	° Open	xt
10°	0.46	55°	0.31
15°	0.46	60°	0.28
20°	0.46	65°	0.27
25°	0.45	70°	0.25
30°	0.44	75°	0.24
35°	0.42	80°	0.22
40°	0.39	85°	0.21
45°	0.35	90°	0.19
50°	0.33		

DYNAMIC TORQUE COEFFICIENT

Figure 1 - Seat Retainer Downstream

Figure 2 - Seat Retainer Upstream

SUBCHOKED AND CHOKED FLOW

For	Condition	Use	Note
Subchoked Flow	Pipe and Valve Size Equal	 Nominal Valve Size Valve Pressure Drop Ct from graphs/tables on "Figure 1 - Seat Retainer Downstream" on page 4 	
	With Pipe Reducers	 Nominal Valve Size Ct from graphs/tables on "Figure 1 - Seat Retainer Downstream" on page 4 Valve Pressure Drop as if valve were installed in valve-sized pipe with same flow rate 	
Choked Flow	Pipe and Valve Size Equal	 Nominal Valve Size Ct from graphs/tables on "Figure 1 - Seat Retainer Downstream" on page 4 Actual Pressure drop through valve. 	If actual pressure drop at the choked condition is not known, estimate by evaluating the pressure in the piping at the valve outlet needed to sustain the choked flow rate through the piping downstream of the valve; then subtracting it from the valve inlet pressure.
	With Pipe Reducers	 Nominal Valve Size Ct from graphs/tables on "Figure 1 - Seat Retainer Downstream" on page 4 Actual pressure drop through valve/ reducer assembly. 	If the pressure drop at the choked condition is not known, estimate the line pressure just downstream of the valve/reducer assembly which is needed to sustain the choked flow rate of the valve/reducer assembly through the downstream piping; then subtract this pressure from the line pressure just ahead of the valve/ reducer assembly, to get the actual pressure drop.

For	Condition	Use	Note	
Subshakad		Nominal Valve Size		
	Pipe and Valve Size	Valve Pressure Drop		
	Equal	 Ct from graphs/tables on "Figure 1 - Seat Retainer Downstream" on page 4 		
Subchoked		Nominal Valve Size		
FIOW	With Pipe	 Ct from graphs/tables on "Figure 1 - Seat Retainer Downstream" on page 4 	In calculating Y, use the line pressure just	
	Reducers	 Valve Pressure Drop (and expansion factor Y) as if valve were installed in valve-sized pipe with same flow rate. 	the table on page 3.	
		Nominal Valve Size		
	Pipe and Valve Size Equal	Gas expansion factor Y of 2/3	Use xt from the table on page 3.	
		• Ct from graphs/tables on "Figure 1 - Seat Retainer Downstream" on page 4		
Choked		• $\triangle p = p1$ Fk xt		
Flow		Nominal Valve Size		
	With Pino	Gas expansion factor Y of 2/3	Use the line pressure just upstream of the inlet	
	Reducers	• Ct from graphs/tables on "Figure 1 - Seat Retainer Downstream" on page 4	reducer for p1 and xt from the table above in calculating $\triangle p$, on page 3.	
		• $\triangle p = p1$ Fk xt		

MAXIMUM ALLOWABLE STEM TORQUES (Lb-in)

Cryogenic and Low Temperature Valves

Valve	ASME 150	ASME 300					
inches	Series S40/41	Series S42/43					
3	1,968	1,968					
4	1,968	1,968					
6	3,368	5,630					
8	5,544	10,292					
10	10,251	18,511					
12	14,454	27,818					
14							
16							
18	Please Consult Factory						
20							
24							

Based on stem Material Code 54P and 5MF at ambient conditions (73°F)

MAXIMUM ALLOWABLE STEM TORQUES (N-m)

Cryogenic and Low Temperature Valves

Valve	ASME 150	ASME 300						
inches	Series S40/41	Series S42/43						
3	222	222						
4	222	222						
6	381	636						
8	626	1,163						
10	1,158	2,091						
12	1,633	3,143						
14								
16								
18	Please Con	Please Consult Factory						
20								
24								

Based on shaft material code 54P and 5MF at ambient conditions (23°C)

VALVE SIZING COEFFICIENTS (Cv)

- 1. Cv stands for Valve Sizing Coefficient.
- 2. Cv varies with the valve size, angle of opening and the manufacturer's valve style.
- 3. Cv is defined as the volume of water in USGPM that will flow through a given restriction or valve opening with a pressure drop of one (1) psi at room temperature.

	ASME 150 Series 40/41 - Valve Sizing Coefficient (Cv)											
Valve		Disc Position (Degrees)										
Size Inches	90°	80°	70°	60°	50°	40°	30°	20°	10°			
3	185	178	155	123	87	56	32	14	5			
4	375	365	315	250	175	115	63	31	10			
6	1,350	1,070	750	510	330	218	140	81	35			
8	2,800	2,230	1,590	1,060	685	456	280	165	65			
10	4,300	3,450	2,430	1,630	1,050	700	450	250	100			
12	<mark>6,6</mark> 50	5,330	3,750	2,530	1,630	1,080	700	390	155			
14												
16												
18				Ple	ase Consult Fac	tory						
20												
24												

		ASME 300 Series 42/43 - Valve Sizing Coefficient (Cv)									
Valve		Disc Position (Degrees)									
Size Inches	90°	80°	70°	60°	50°	40°	30°	20°	10°		
3	185	178	155	123	87	56	32	14	5		
4	375	365	315	250	175	115	63	31	10		
6	1,000	875	710	530	370	240	138	79	26		
8	2,000	1,720	1,360	950	630	405	240	121	47		
10	2,650	2,250	1,740	1,200	780	510	295	150	61		
12	4,000	3,400	2,500	1,690	1,100	710	430	220	92		
14											
16											
18				Ple	ase Consult Fact	ory					
20											
24											

VALVE SIZING COEFFICIENTS (Kv)

- 1. Kv stands for Valve Sizing Coefficient.
- 2. Kv varies with the valve size, angle of opening and the manufacturer's valve style.
- 3. Kv is defined as the volume of water in Cubic Meters/Hour (m3/hr) that will flow through a given restriction or valve opening with a pressure drop of one (1) bar at room temperature.

	ASME 150 Series 40/41 - Valve Sizing Coefficient (Kv)										
Valve	Disc Position (Degrees)										
Size mm	90°	80°	70°	60°	50°	40°	30°	20°	10°		
80	158	152	132	105	74	48	27	12	4		
100	320	311	269	213	149	98	54	26	9		
150	1,152	913	640	435	281	186	119	69	30		
200	2,388	1,902	1,356	904	584	389	239	141	55		
250	3,668	2,943	2,073	1,390	896	597	384	213	85		
300	5,672	4,546	3,199	2,158	1,390	921	597	333	132		
350											
400											
450	Please Consult Factory										
500											
600											

		ASME 300 Series 42/43 - Valve Sizing Coefficient (Kv)								
Valve	Disc Position (Degrees)									
Size mm	90°	80°	70°	60°	50°	40°	30°	20°	10°	
80	158	152	132	105	74	48	27	12	4	
100	320	311	269	213	149	98	54	26	9	
150	853	746	606	452	316	205	118	67	22	
200	1,706	1,467	1,160	810	537	345	205	103	40	
250	2,260	1,919	1,484	1,024	665	435	252	128	52	
300	3,412	2,900	2,133	1,442	938	606	367	188	78	
350										
400										
450				Plea	ase Consult Fact	tory				
500										
600										

Examples of Typical Flange to Valve Bolting*

Please refer to ASME B-16.5 or B-16.47 for Flange and Bolt Dimension Information

* Double flange style bolting not shown.

** Lug Threads may be tapped from both sides and therefore tap may not be continuous.

All statements, technical information, and recommendations in this bulletin are for general use only. Consult Bray representatives or factory for the specific requirements and material selection for your intended application. The right to change or modify product design or product without prior notice is reserved. Patents issued and applied for worldwide.

Bray[®] is a registered trademark of Bray International, Inc.

© 2015 Bray International, Inc. All rights reserved. TM_1059_Cryogenic_06_01_2015

Bray Controls

A Division of Bray International, Inc. 13333 Westland East Blvd. Houston, Texas 77041 Tel: 281.894.5454 • <u>www.bray.com</u>